Structure of the amylopectin fraction of amylomaize

Chieno Takeda a, Yasuhito Takeda *,b and Susumu Hizukuri b

(Received October 20th, 1992; accepted February 20th, 1993)

ABSTRACT

The amylopectin fraction (Ap-fraction) from three amylomaize starches (amylose content, 36, 41, and 59%) was fractionated into three amylopectin components (having different molecular size) and a short-chain component by gel-permeation chromatography. The content of the largest amylopectin component was relatively low in a high-amylose maize starch and it had an iodine affinity (i.a., g/100 g) of 1.94–2.50 and average chain length (\overline{cl}) of 29–30. Both values increased with decrease of molecular size (i.a. < 7.23, \overline{cl} < 41). The proportion of long side chains [weight-average dp (\overline{dp}_w) 99–110] increased with decrease of molecular size, whereas that of short side chains (\overline{dp}_w 17–22) decreased. This is the reason why a smaller component had a larger i.a. and \overline{cl} . Very long (\overline{dp}_w 400–690) and medium-size (\overline{dp}_w 45–48) side chains were present in similar proportions, regardless of molecular size. The short-chain component was slightly branched (number of chains, 1.9–2.1 on average) and had an i.a. of 8.20–9.57, \overline{dp}_w of 120, and number-average dp of 92–95. A large amount of the short-chain component (27% of the Ap-fraction, by weight) was found in the high-amylose (59%) maize starch.

INTRODUCTION

Several mutants of maize and normal maize contain starches having an apparent amylose content of 0-80%¹⁻⁴. Some normal^{5,6}, sugary-2 (B90)⁶, and amylose-extender⁷ maizes have amylose of an approximately similar structure³, while amylopectins from various varieties⁸⁻¹³ differ in side-chain distribution and proportions of long and short side chains. Recently, additional very long side chains were found⁶ in normal and B90 maize amylopectins fractionated from starches by the method of Lansky et al.¹⁴. These were absent from waxy maize amylopectins, but were similar to those from some rice amylopectins^{15,16}. The very long chains were missed in the experiments using whole starches because they were eluted^{5,6} at the same elution position (void volume) as amylose. Amylomaize amylopectin fractions have a high iodine affinity (i.a.), and appear^{3,10,17} to contain components having various molecular sizes, including an unusual short-chain component (number-average dp ~ 100). However, details of their structures have not yet been investi-

^a Kagoshima Immaculate Heart College, Toso-4, Kagoshima 890 (Japan)

^b Department of Biochemical Science and Technology, Faculty of Agriculture, Kagoshima University, Korimoto-1, Kagoshima 890 (Japan)

^{*} Corresponding author.

gated. We report here the structures of amylomaize amylopectin fractions obtained from completely dispersed starches.

EXPERIMENTAL

Materials.—A laboratory-prepared amylomaize starch (Lab) was the generous gift of Drs. M. Taki and T. Yamada, and commercial amylomaize starches were the products (Hylon and Hylon-7) of Oji National Co., Ltd. (Tokyo). The actual amylose contents of Hylon, Lab, and Hylon-7 starches⁷ were 36, 41, and 59%. respectively. The amylopectin fractions (Ap-fractions) were fractionated from the starches, which were defatted by three replications of dissolution and precipitation from Me₂SO (ref 18), by the method of Lansky et al.¹⁴. After removal of amylose precipitates by centrifugation, supernatant solutions of the Ap-fractions were concentrated to one-tenth volume in a rotary evaporator at 40-45°C, and the Ap-fractions were precipitated by the addition of a 3-fold volume of ethanol, washed with ethanol and ether, and dried under CaCl₂. The yields of the Ap-fractions from Hylon, Lab, and Hylon-7 starches (10 g, dry weight) were 5.0, 4.4, and 2.9 g (dry weight), respectively. Beta-amylase was prepared¹⁹ from sweet potatoes and recrystallized from aq ammonium sulfate. Crystalline Pseudomonas isoamylase was the product of Hayashibara Biochemical Laboratories Inc. (Okayama). Toyopearl HW-75F and HW-55S were obtained from Tosoh Co., Ltd. (Tokyo). Other chemicals of the highest purity were the products of Wako Pure Chemical Industry Ltd.

Analytical methods.—The iodine affinity (i.a., g/100 g) was determined by the amperometric titration method of Larson et al.²⁰ with modifications¹⁵. The blue value was determined as previously described²¹. The number-average dp (dp_n) was determined by the modified Park-Johnson method²². The weight-average dp (dp_w) was determined²³ by HPLC on three columns of Tosoh TSKgel G6000PW, G4000PW, and G3000PW in series, using a differential refractometer (Tosoh RI-8011) and a low-angle laser-light-scattering photometer (Tosoh LS-8) as detectors. The average chain length (cl) was determined by the rapid Smith-degradation method²⁴ and hydrolysis with isoamylase²⁵. The number of chains per molecule was calculated as $\overline{dp}_n/\overline{cl}$. The chain-length distribution of the Ap-fractions after isoamylolysis was examined by HPLC on a column of TSKgel G2000SW, using the detectors described above. The beta-amylolysis limit (β -AL) was determined as described previously²². Phosphorus was determined²⁶ as inorganic phosphorus after treatment with hot perchloric acid²⁷. Phosphorus at C-6 of the glucosyl residues was determined as described previously²⁸. Carbohydrate was determined by the phenol-H₂SO₄ method²⁹.

RESULTS AND DISCUSSION

Table I summarizes the properties of the amylopectin fractions (Ap-fractions) from Hylon, Lab, and Hylon-7 amylomaize starches, which had amylose contents

TABLE I			
Properties of the	Ap-fractions f	from amylo	maize starches

Property	Ap-fraction			
	Hylon	Lab	Hylon-7	
Iodine affinity (i.a.) (g/100 g)	3.60	4.23	4.63	
Blue value	0.427	0.475	0.441	
λ_{\max} (nm)	573	574	575	
Average chain-length (cl)				
Smith degradation	30	31	32	
Isoamylolysis	29	32	32	
Beta-amylolysis limit $(\beta-AL)$ (%)	61	62	61	
Phosphorus (ppm)				
Organic	110	75	261	
Linked to C-6	54	57	81	

of 36, 41, and 59%, respectively, calculated on the basis of the respective amylose and amylopectin i.a.^{7,15}. The Ap-fractions had a higher i.a. (3.60–4.63) and blue value (0.427–0.475) than those for normal (i.a., 0.8–1.1; blue value, 0.11, 0.15) and sugary-2 (B90) (i.a., 3.1; blue value, 0.26) maizes^{5,6}. The λ_{max} (573–575 nm) was higher than that (554, 569 nm) for normal maizes, but lower than that (610 nm) for B90 maize. These iodine-binding properties suggest that maize amylopectins differ in structure.

The rapid Smith-degradation and isoamylolysis of each Ap-fraction gave a similar \overline{cl} , indicating complete debranching of the Ap-fractions by isoamylase. The \overline{cl} was in the range 29–32, being ca. 1.5-fold those for normal (20, 21.9) and B90 (20) maizes, and Hylon-7 showed the highest \overline{cl} of 32. The β -AL (61–62%) of the Ap-fractions was similar to those of normal (59%) and B90 (60%) maize amylopectins. The organic phosphorus contents were 110, 75, and 261 ppm for Hylon, Lab, and Hylon-7, respectively. The contents were the highest among cereal amylopectins so far examined [normal maize, 15 ppm; rice¹⁵, 8–29 ppm; wheat, 9–20 ppm (unpublished data)], but lower than that (604 ppm) of potato amylopectin²⁸. For Hylon, Lab, and Hylon-7, 50, 76, and 31%, respectively, of the phosphorus was linked to C-6 of the glucosyl residues, and the remainder is supposed to be bound to C-3, as in the case of potato amylopectin²⁸.

Fig. 1 shows the chain-length distributions in gel-permeation HPLC after isoamylolysis. The chains were fractionated into F1-F4, in order of elution (Fig. 1). The Ap-fractions showed a similar \overline{dp}_w for each F2-F3, but a slightly different chain-length distribution. Hylon-7 had a slightly larger proportion of F2 and a rather smaller proportion of F4 compared with the others (Table II). The Ap-fractions differ from normal and B90 maize amylopectins in chain-length distribution and peak dp. The sum of F1 and F2 (25-28%) was larger than that (10-16%) for normal and B90 maizes, while the proportion of F4 (41-44%) was smaller than those (69-70%) of normal and B90^{5,6}. The high i.a. of the Ap-fractions is due to

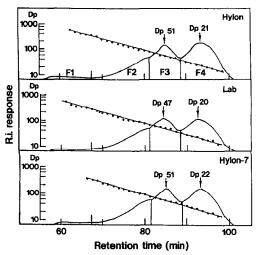


Fig. 1. Gel-permeation HPLC of the Hylon, Lab, and Hylon-7 Ap-fractions debranched with isoamylase: ——, response of the differential refractometer (R.i.); •. Dp.

the relatively large amounts of F1 and F2. The peak dp (20-22) of F4 was larger than those (15-18) for normal and B90 maizes.

Fig. 2 shows gel-permeation chromatograms of the Lab and Hylon-7 Ap-fractions on Toyopearl HW-75F before isoamylolysis. The Ap-fractions were separated into subfractions of large (FL), medium (FM), and small (FS) components (Fig. 2, top), and FS was further fractionated into FSa and FSb by gel-permeation chromatography on Toyopearl HW-55SF (Fig. 2, bottom). The weight proportions of FL, FM, FSa, and FSb were 37, 25, 26, and 12%, respectively, for Lab, and 26, 32, 15, and 27%, respectively, for Hylon-7 (Table III). The Hylon-7 Ap-fraction contained a smaller amount of a large component (FL) than the Lab Ap-fraction, but a larger amount of a small component (FSb). FL had the lowest i.a. (Lab, 2.50; Hylon-7, 1.94); it was lower than those of the parent Ap-fractions and between that of normal and B90 maize amylopectins. The smallest component FSb had the highest i.a. of 8.20–9.57, being about one-half that (\sim 20) of amylose. The blue values and λ_{max} showed a tendency similar to the i.a.

TABLE II

Carbohydrate amounts and \overline{dp}_w of F1-F4 of the Ap-fractions debranched with isoamylase

Ap-fraction	Carbol	nydrate amo	unts (wt %)		$\overline{\mathrm{Dp}}_{w}$		
	F1	F2	F3	F4	F2	F3	F 4
Hylon	4	21	31	44	116	57	22
Lab	3	24	31	42	114	56	22
Hylon-7	2	26	31	41	116	56	23

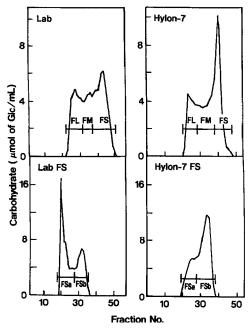


Fig. 2. Gel-permeation chromatograms of the Lab and Hylon-7 Ap-fractions and their subfactions on Toyopearl HW-75F (top) and HW-55F (bottom).

The \overline{dp}_{w} and apparent dp distribution of the subfractions (except FL), being excluded by gel-permeation HPLC, were determined (Fig. 3). FM had a \overline{dp}_{w} of $\sim 20\,000$ with a peak dp of 28 200 and 22 400 for Lab and Hylon-7, respectively

TABLE III
Properties of the subfractions from the Ap-fractions

Property	Lab				Hylon-7				
	FL	FM	FSa	FSb	FL	FM	FSa	FSb	
Weight proportion,						***************************************			
% of total	37	25	26	12	26	32	15	27	
I.a. (g/100 g)	2.50	3.65	4.59	8.20	1.94	4.43	7.23	9.57	
Blue value	0.297	0.335	0.367	0.597	0.275	0.370	0.445	0.655	
λ_{max} (nm)	570	572	573	578	571	574	574	580	
$\overline{\mathrm{Dp}}_{n}^{a}$			2720	95			1330	92	
टा									
Smith degradation	31	32	37	46	29	34	42	49	
Isoamylolysis	29	33	34	46	28	33	39	50	
β-AL (%)	57	58	57	73	58	57	57	74	
External cl b	19	21	22	36	19	21	25	39	
Internal cl c	10	11	13	9	9	12	15	10	
Number of chains	•								
$(\overline{dp}_n/\overline{cl})$			76	2.1			32	1.9	

^a Number-average dp. ^b and ^c, Calculated by the equations, $(\overline{cl} \times \beta - AL/100) + 2$ and $[\overline{cl} - (external \overline{cl}) - 1]$, respectively.

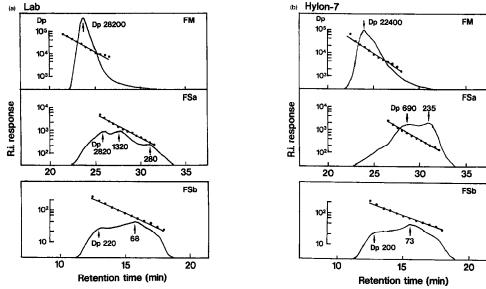


Fig. 3. Gel-permeation chromatograms of the subfractions of the Lab (a) and Hylon-7 Ap-fractions (b) on Tosoh TSKgel G6000PW, G4000PW, and G3000PW in series (top and middle) and on Tosoh TSKgel G2000SW (bottom): ———, response of the differential refractometer (R.i.); •, Dp.

(Table IV). FSa had a \overline{dp}_w of 4250 and 2110 for Lab and Hylon-7, respectively, and Lab and Hylon-7 had three (dp 2820, 1320, and 280) and two (dp 690 and 235) peaks, respectively. The \overline{dp}_w of FSb was 120, and its peak dp values were \sim 210 and \sim 70; its apparent dp distribution was relatively wide (dp_w 40– \sim 350). The \overline{dp}_n of FSa was 2720 and 1300 for Lab and Hylon-7, respectively, being in the range for amyloses 16,22,30 (800–4920), and FSb had a \overline{dp}_n of 92–95 (Table III). The \overline{dp}_n of the large components was not determined because adequate amounts of the specimens were not available. The ratio $\overline{dp}_w/\overline{dp}_n$ of FSb was \sim 1.3, indicating a narrow molecular-weight distribution. These results indicate that the Ap-fractions consist of several components with various sizes. A similar short-chain component of amylomaize starches was suggested previously 3,10.

TABLE IV $\overline{\mathrm{Dp}}_{w}^{a}$ and apparent dp distributions of FM, FSa, and FSb

Property	Lab			Hylon-7			
	FM	FSa	FSb	FM	FSa	FSb	
Dp w a	21200	4250	120	19200	2110	120	
$\overline{\mathrm{Dp}}_{n}$		2720	95		1330	92	
$\overline{\mathrm{Dp}}_{w}/\overline{\mathrm{dp}}_{n}$		1.56	1.26		1.59	1.33	
Apparent dp distribution	10600-47400	500-23300	40-370	7230-42600	230-13400	40-330	

Weight-average dp.

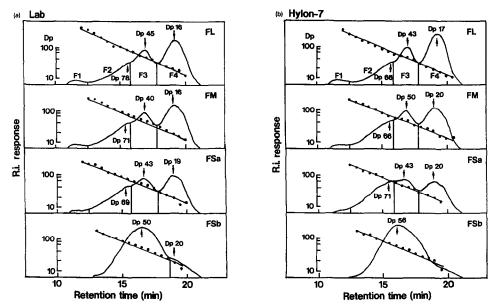


Fig. 4. Gel-permeation HPLC of the subfractions of the Lab (a) and Hylon-7 Ap-fractions (b) debranched with isoamylase; ——, response of the differential refractometer (R.i.); •, Dp.

FL appears to have a similar size to other amylopectins, judging from gel-permeation chromatograms, but its \overline{cl} (29–30) was much larger than those of normal (20, 21.9) and B90 (20) maize amylopectins. The smaller component showed a larger \overline{cl} , and FSb had the largest \overline{cl} (46–50). The β -AL of the components, except FSb, was 57–58%, slightly lower than the parent Ap-fractions (61–61%), due to the fact that the parent Ap-fractions contained FSb of a high β -AL (73–74%). Both the external and internal \overline{cl} of the components, except for FSb, increased with decrease of molecular size. These \overline{cl} values were larger than those of normal and B90 maize amylopectins (external and internal \overline{cl} , 14–15 and 5–6, respectively). FSa had, on average, 32–76 chains per molecule. FSb had a very small number of chains per molecule (\sim 2), implying that FSb was a mixture of linear chains, as suggested previously ^{3,10}, and slightly branched chains. FSb did not form a complex with 1-butanol, due to the small molecular size, but formed a complex with iodine and gave a high i.a. Similar short-chain components have not been found in starches from other maizes and plants.

Fig. 4 shows the chain-length distribution of the components in gel-permeation HPLC after debranching by isoamylase. FL, FM, and FSa showed an elution profile with two peaks (dp 16-20 and 40-50) and a shoulder (dp 66-78), similar to normal and B90 maize amylopectins (dp 15-18, 40-47) although the shoulder is not clear. In this respect, FL, FM, and FSa are typical amylopectin components. The chains were separated into four fractions, F1-F4 in order of elution. F1-F4 showed a \overline{dp}_w of 400-690, 99-110, 45-48, and 17-22, respectively (Table V). The

	$\overline{\mathrm{Dp}}_{\scriptscriptstyleM}$,			Carl	oohydr	ate am	ount (%)				
			By weight					By mole					
	F1	F2	F3	F4	F1	F2	F3	F4	F4/F3	F1	F2	F3	F4
Lab													
FL	520	110	48	21	3	18	31	48	1.55	~ 0.2	5	18	77
FM	690	108	47	18	3	22	31	44	1.42	~ 0.1	6	20	74
FSa	410	101	46	17	2	27	30	40	1.33	~ 0.2	8	20	72
Hylon-7													
FL	490	99	47	20	3	19	28	50	1.79	~ 0.2	6	18	76
FM	510	103	46	22	3	27	29	41	1.41	~ 0.2	9	23	68
FSa	400	103	45	22	2	35	29	34	1.17	~ 0.2	13	26	61

TABLE V Carbohydrate amounts and \overline{dp}_w of F1-F4 of FL, FM, and FSa debranched with isoamylase

 \overline{dp}_{uv} values of F3 and F4 are comparable with those for the corresponding fractions of normal $(dp_w 46-47 \text{ and } 17-18, dp_n 44 \text{ and } 16)$, waxy³¹ $(dp_w 51 \text{ and } 18)$, and B90 (dp., 40 and 15) maize amylopectins. The carbohydrate proportions, on a weight basis, of F1-F4 were 2-3, 18-35, 28-31, and 34-50\%, respectively. The sum of the F1 and F2 proportions (21-37%) is higher than those (10-12%) of normal maize amylopectins⁵, and this is the reason why the amylomaize amylopectin components had a high i.a. The B90 amylopectin has a lower proportion (16%) but a relatively higher i.a. (3.1), due to a higher proportion ($\sim 10\%$) of very long chains (F1) having a greater affinity for iodine. These components showed a higher proportion of F3 than normal (19-20%) and B90 (15%) maize amylopectins, but a lower proportion of F4 (normal 69-70, B90 69%). The ratios F4/F3 were 1.17-1.79. The values are similar to those published for amylomaize 13,31 (0.8, 1.1), but lower than those for normal (2.9, 3.5) and mutant 6,13,31 (waxy 2.9, 3.9; sugary-2 2.7, 4.6; dull 4.0) maizes. A smaller amylopectin component showed a higher proportion of F2, but a lower proportion of F4, similar to their proportions on a molar basis. This is the reason for its higher i.a. FSb showed a unique elution profile with a peak of dp 50-56, and differed markedly from amylopectin.

Thus, the Ap-fractions, obtained from the completely dispersed, defatted starches of the amylomaizes, were composed of amylopectin (FL-FSa) and a short-chain component (FSb). The amylopectin was poorly branched compared with normal and sugary-2 (B90) maize and other amylopectins, and contained a large proportion of long chains (F2) and a small proportion of short chains (F4). This is probably due to a deficiency of branching enzyme IIb³² in amylomaize which preferentially transfers short chains³³. The amylopectin contained components with various sizes and a slightly different chain-length distribution. The proportion of the largest component was lower in the amylomaize starches than in other starches, whereas medium and small components were predominant. A smaller component had a larger amount of long chains and a smaller amount of short chains, resulting in a higher i.a. The short-chain component (FSb) was a

mixture of linear (short-chain amylose) and slightly branched molecules, and was most evident in the high-amylose maize starch (Hylon-7). Such a short-chain component has not been detected in other starches. This and previous^{5,6,31} results indicate that the amylopectins from waxy, normal, *sugary-2*, and *amylose-extender* maizes differ significantly in details of their fine structure.

REFERENCES

- 1 R.L. Whistler and E.F. Paschall (Eds.), Starch: Chemistry and Technology, Vol. 1, Academic Press, New York, 1965, pp 43-63.
- 2 H. Fuwa, Denpun Kagaku, 20 (1973) 120-130.
- 3 W. Banks, C.T. Greenwood, and D.D. Muir, Staerke, 26 (1974) 289-328.
- 4 R.L. Whistler, J.N. BeMiller, and E.F. Paschall (Eds.), Starch: Chemistry and Technology, 2nd edn., Academic Press, Orlando, FL, 1984, pp 25-86.
- 5 Y. Takeda, T. Shitaozono, and S. Hizukuri, Staerke, 40 (1988) 51-54.
- 6 Y. Takeda and J. Preiss, Carbohydr. Res., 240 (1993) 265-275.
- 7 C. Takeda, Y. Takeda, and S. Hizukuri, Cereal Chem., 66 (1989) 22-25.
- 8 C.D. Boyer, D.L. Garwood, and J.C. Shanonn, Staerke, 28 (1976) 405-436.
- 9 Y. Ikawa, D.V. Glover, Y. Sugimoto, and H. Fuwa, Carbohydr. Res., 61 (1978) 211-216.
- 10 C.D. Boyer, P.A. Damewood, and G.L. Matters, Staerke, 32 (1980) 217-222.
- 11 Y. Ikawa, D.V. Glover, Y. Sugimoto, and H. Fuwa, Staerke, 33 (1981) 9-13.
- 12 N. Inouchi, D.V. Glover, T. Takaya, and H. Fuwa, Staerke, 35 (1983) 371-375.
- 13 N. Inouchi, D.V. Glover, and H. Fuwa, Staerke, 39 (1987) 259-266.
- 14 S. Lansky, M. Kooi, and T.J. Schoch, J. Am. Chem. Soc., 71 (1949) 4066-4075.
- 15 Y. Takeda, S. Hizukuri, and B.O. Juliano, Carbohydr. Res., 168 (1987) 79-88.
- 16 S. Hizukuri, Y. Takeda, N. Maruta, and B.O. Juliano, Carbohydr. Res., 189 (1989) 227-235.
- 17 T. Baba, Y. Arai, T. Yamamoto, and T. Itoh, Phytochemistry, 21 (1982) 2291-2296.
- 18 Y. Takeda, S. Hizukuri, and B.O. Juliano, Carbohydr. Res., 148 (1986) 299-308.
- 19 Y. Takeda and S. Hizukuri, Biochim. Biophys. Acta, 185 (1969) 469-471.
- 20 B.L. Larson, K.A. Gills, and R. Jennes, Anal. Chem., 25 (1953) 802-804.
- C. Takeda, Y. Takeda, and S. Hizukuri, Cereal Chem., 60 (1983) 212-216.
 S. Hizukuri, Y. Takeda, M. Yasuda, and A. Suzuki, Carbohydr. Res., 95 (1981) 205-213.
- 23 S. Hizukuri and T. Takagi, Carbohydr. Res., 134 (1984) 1-10.
- 24 S. Hizukuri and S. Osaki, *Carbohydr. Res.*, 63 (1978) 261–264.
- 25 A. Suzuki, S. Hizukuri, and Y. Takeda, Cereal Chem., 58 (1981) 286-290.
- 26 K. Itaya and M. Ui, Clin. Chim. Acta, 14 (1966) 361-366.
- 27 R.J.L. Allen, Biochem. J., 24 (1940) 858-865.
- 28 S. Hizukuri, S. Tabata, and Z. Nikuni, Staerke, 22 (1970) 338-343.
- 29 M. Dubois, K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith Anal. Chem., 28 (1956) 350-356.
- 30 Y. Takeda, S. Hizukuri, C. Takeda, and A. Suzuki, Carbohydr. Res., 165 (1987) 139-145.
- 31 S. Hizukuri, Carbohydr. Res., 141 (1985) 295-306.
- 32 C.D. Boyer and J. Preiss, Biochem. Biophys. Res. Commun., 80 (1978) 169-175.
- 33 Y. Takeda, H.-P. Guan, and J. Preiss, Carbohydr. Res., 240 (1993) 253-263.